A Comparative Study on Using Zernike Velocity Moments and Hidden Markov Models for Hand Gesture Recognition

نویسندگان

  • Moaath Al-Rajab
  • David C. Hogg
  • Kia Ng
چکیده

Hand-gesture recognition presents a challenging problem for computer vision due to the articulated structure of the human hand and the complexity of the environments in which it is typically applied. Solving such a problem requires a robust tracking mechanism which in turn depends on an effective feature descriptor and classifier. Moment invariants, as discriminative feature descriptors, have been used for shape representation for many years. Zernike moments have been particularly attractive for their scale, translation and rotation invariance. More recently, Zernike moments have been extended to a spatio-temporal descriptor, known as the Zernike velocity moment, through combining with the displacement vector of the centre of mass of the target object between video frames. This descriptor has hitherto been demonstrated successfully in human gait analysis. In this paper, we introduce and evaluate the application of Zernike velocity moments in hand-gesture recognition, and compare with a bank of hidden Markov models with Zernike moments as observations. We demonstrate good performance for both approaches, with a substantial increase in performance for the latter method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Hand Motion Evaluation Using HMM

Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...

متن کامل

Human Computer Interface for Gesture-Based Editing System

The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interactio n(HCI). Many methods for hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMM is proposed for alphabetical hand gesture recognition. In the preprocessing ...

متن کامل

A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition

Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) ...

متن کامل

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008